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Colloidal particles embedded in the cytoplasm of living mammalian cells have been found to display
remarkable heterogeneity in their amplitude of motion. However, consensus on the significance and origin of
this phenomenon is still lacking. We conducted experiments on Hmec-1 cells loaded with about 100 particles
to reveal the intracellular particle dynamics as a function of both location and time. Central quantity in our
analysis is the amplitude �A� of the individual mean-squared displacement �iMSD�, averaged over a short time.
Histograms of A were measured, �1� over all particles present at the same time and �2� for individual particles
as a function of time. Both distributions showed significant broadening compared to particles in Newtonian
liquid, indicating that the particle dynamics varies with both location and time. However, no systematic
dependence of A on intracellular location was found. Both the �strong� spatial and �weak� temporal variations
were further analyzed by correlation functions of A. Spatial cross correlations were rather weak down to
interparticle distances of 1 �m, suggesting that the precise intracellular probe distribution is not crucial for
observing a dynamic behavior that is representative for the whole cell. Temporal correlations of A decayed at
�10 s, possibly suggesting an intracellular reorganization at this time scale. These findings imply �1� that both
individual particle dynamics and the ensemble averaged behavior in a given cell can be measured if there are
enough particles per cell and �2� that the amplitude and power-law exponent of iMSDs can be used to reveal
local dynamics. We illustrate this by showing how superdiffusive and subdiffusive behaviors may be hidden
under an apparently diffusive global dynamics.
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I. INTRODUCTION

Recent literature has witnessed a strong increase in the
use of colloidal particles as local tracers of dynamic pro-
cesses in soft materials �1,2�. What makes these particles so
suitable is that they are both small enough to show Brownian
motion and large enough to probe the deformations of the
soft material network. Then the motion of each particle is
driven by mechanical excitations from surrounding mol-
ecules on one hand and damped by its viscoelastic microen-
vironment on the other. Conversely, information about these
forces can also be obtained by analyzing the statistics of
particle motion. A good example is the study of passive en-
gineering materials with particle tracking microrheology
�PTM�; here the assumptions that all particle motions are
driven by thermal collisions and that the fluctuation-
dissipation theorem �FDT� applies are used to calculate vis-
coelastic properties of the material from the mean-squared
displacement �MSD� of the particles as a function of lag time
�3�.

Alternatively, also the interior �i.e., cytoplasm� of living
biological cells has been studied with the methods from PTM
�4–19�. Measuring the statistical motions of �endogenous or
microinjected� particles provides a direct way to study intra-
cellular mechanics at �sub�micron length scales. Yet there are
also certain challenges involved. In the earliest PTM studies
on soft biological matter it was recognized that besides the
size, also the chemistry of the probe can have strong influ-
ence on the MSD functions obtained �9,20,21�. More re-
cently, also contributions of adenosine triphosphate �ATP�
dependent processes to particle dynamics have been identi-
fied �16,18,22�. Together, these studies have resulted in a

general consensus that the FDT is violated and that intracel-
lular particle MSDs can reflect thermal or ATP-dependent
driving forces, viscoelastic damping, or combinations
thereof.

Which information can be obtained from MSDs measured
inside living cells then depends on the experimental condi-
tions and on the time and/or length scales addressed. Re-
stricting the analysis to short lag times �22� and suppressing
active motion by ATP depletion �12� are possibly strategies
to measure viscoelastic properties of the cytoplasm. Alterna-
tively, in cases where probes cannot be assumed to be chemi-
cally inert and driven by thermal collisions, their MSDs can
still provide unique information. For example, probes at-
tached to specific intracellular structures �such as the actin
network or microtubules� can reveal structural or dynamic
changes in these networks.

An additional aspect encountered in intracellular studies
is that the dynamic behavior varies from particle to particle.
Considering the complexity and structural heterogeneity of
living cells, this finding is not surprising, but it also raises the
question of how to deal with this heterogeneous dynamics.
Most studies have been aimed at measuring a behavior rep-
resentative for the whole cell. For single large �4 �m� beads
�12� this was achieved by temporal averaging, while in stud-
ies with several small �100–500 nm� particles distributed
over the cell �6,7,10,13�, both spatial and temporal averaging
were used to obtain an overall MSD. However, that obtaining
such a representative MSD from just a few particles per cell
is far from trivial is also clear, considering that the MSD
amplitude sometimes varies over more than an order of mag-
nitude �4,5,9,14,15�.

Relatively few studies have been aimed at studying these
heterogeneities themselves. Using multiple particle tracking
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�one-point microrheology �1PMR��, Heidemann and Wirtz
�4� and Kole et al. �5� reported cytoplasmic stiffening near
the leading edges of migrating Swiss 3T3 fibroblasts, in
agreement with the required local functionality of the cell.
In another study, nonmigrating fibroblasts were reported to
have a mechanical compliance that depended on the distance
from the nucleus. This was described as an intrinsic me-
chanical heterogeneity �9�. Alternatively, other researchers
addressed the aspect of spatial heterogeneity via both one-
point microrheology and two-point microrheology �2PMR�
�14,15,23�. Since the Drr correlator was found to scale with
interprobe distance r as �1 /r for 2�r�8 �m �as expected
for a homogeneous medium�, Van Citters et al. �15� con-
cluded that gross-scale mechanical heterogeneity was absent
in TC7 epithelial cells. However experiments with a single
large bead per cell had shown large amplitude variations
from cell to cell �14,15�. These were attributed to variations
in �adhesive� contact between probe and matrix. In a study
by Bursac et al. �18�, a relation between binding state and
MSD behavior was found for externally attached beads. Thus
in literature, different physical origins have been suggested
for the spatially heterogeneous dynamics found in cells: me-
chanical heterogeneity �4,5� and a variability in tracer-
cytoskeleton contacts �15,18�.

The temporal aspect of heterogeneity has been addressed
even less even though the potential role hereof has been
pointed out �14,19,24,25�. A clear example is the intermittent
dynamics �19� displayed by particles that are for short epi-
sodes actively transported via linkage to a motor protein but
otherwise free to diffuse. Also less conspicuous temporal
variations can occur. For example, cytoskeleton remodeling
can expose a particle to a new microenvironment, or a
change in the binding state between probe and matrix can
cause a change in dynamics. The consequences of such
events on time averaged MSDs have hardly been explored so
far.

Thus a lot is still missing in our understanding of the
spatiotemporal heterogeneity of intracellular particle dynam-
ics. This lack of knowledge can seriously obstruct interpre-
tation of intracellular particle tracking experiments in several
respects. First it raises the question, under which conditions a
“blind averaging” over intracellular MSDs will produce a
total MSD that is representative for the whole cell. Second,
due to temporal fluctuations, also the analysis of the indi-
vidual MSDs may become obscured. By default one might
assume that during the time span in which particles are
tracked, the dynamic behavior does not change. But if, for
example, a particle switches intermittently between two
simple dynamic behaviors, and the integration time over the
trajectory is too long, then these individual behaviors will be
washed out, producing an iMSD that is hard to interpret. And
third, a lack of knowledge on the phenomenology of spa-
tiotemporal heterogeneity also obstructs finding its physical
origin�s�.

In this paper we present a detailed study of the spatial and
temporal heterogeneities in the dynamics of intracellular par-
ticles. Two goals were pursued. First, we wanted to assess
the relative importance of spatial and temporal heterogene-
ities in a chosen type of cell and measure the characteristic
length and time scales over which the dynamic behavior of

individual particles can change. And second, we wanted to
explore tools to characterize mechanically heterogeneous
materials in general. Besides biological cells also many en-
gineering materials display spatial or spatiotemporal hetero-
geneity. Examples are associating polymer solutions �26�,
gels �24,27,28�, protein suspensions �29�, gelled and jammed
colloids �1,30�, and two phase materials �31�.

For the present work we chose to analyze the dynamics
of endogenous granules �EGs� in living Hmec-1 cells �also
artificially introduced latex particles called ballistically
injected particles �BIPs� will be considered, albeit in less
detail�. This intracellular probe has been studied before
�10,12,13,32,33� and is known to display heterogeneous dy-
namics when studied with 1PMR �10�. We will use the iMSD
amplitude measured at the shortest lag time as the central
quantity. Its dependence on location and time will be studied
via correlation functions and variance analysis. To achieve
sufficient accuracy we analyze a large data set containing
�105 trajectories, of which a significant fraction has long
duration ��1000 time steps�. Significance of the measured
heterogeneities will be assessed by comparing the results to
reference cases: experiments in viscous liquid and computer
simulations for particles showing Brownian motion.

Importantly, we will conclude that our particles have dis-
tinguishable dynamics within the 150 s time scale of our
experiments. Building on this outcome, we then examine the
distributions in MSD amplitude and power-law exponent. We
will show that both quantities show a significant distribution,
for both EGs and BIPs. The broad range of power-law expo-
nents indicates that not only the motion amplitude but also
the qualitative dynamic behavior of the same kind of par-
ticles present inside the same cell can be very different.

This paper is further organized as follows. In Sec. II we
describe the technical details of the experiments and the
computer simulations. In Sec. III we develop a number of
statistical tools to analyze MSDs and illustrate some of their
properties using numerically simulated MSD traces. In Sec.
IV we will present a quantitative analysis of the spatial and
temporal heterogeneities displayed by EGs in confluent
Hmec-1 cells. Based on these findings, we present in Sec. V
an extended analysis covering also the different types of dy-
namic behavior of EGs and BIPs in individual Hmec-1 cells.
Conclusions will be drawn in Sec. VI.

II. EXPERIMENTS

A. Cell culture

Human microvascular endothelial cells �Hmec-1� �TNO,
Leiden, The Netherlands� at 25–30 passages were cultured at
37 °C in a humidified 5% CO2 environment in endothelial
cell growth medium containing hydrocortisone, hFGF, R3-
IGF-1, ascorbic acid, hEGF, gentamicin, heparin, and 2%
fetal bovine serum �EGM-2, Lonza, Basel, Switzerland�.
Cells were plated on a delta T culture dish �Bioptechs, But-
ler, PA, USA� precoated with fibronectin �100 �g /ml solu-
tion� and mounted on an inverted microscope before experi-
ments. The dish bottom contains a thin ITO layer, whose
temperature was controlled via a heating system �Bioptechs�.
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A heated lid was used to seal the culture dish, and 5% CO2
was supplied continuously.

B. Probe types

We used two intracellular probes—EGs and ballistically
injected particles �BIPs�. The EGs, having a mean size of
�0.5 �m, were confirmed to be mainly lipid droplets and
some mitochondria by staining with Nile red and rhodamine
dyes, respectively. These granules appear as dark objects
under phase contrast microscopy. For the BIPs we chose
fluorescently labeled carboxylated polystyrene spheres with
diameter of 0.2 �m �invitrogen�. These particles were intro-
duced via ballistic injection as described by Panorchan
et al. �6� and visualized by illuminating with an Ar laser
��=488 nm�.

C. Intracellular particle tracking

Probe particles were visualized using a Nikon Eclipse
TE300 inverted microscope coupled to a confocal module
�UltraView LCI 10, Perkin Elmer, Cambridge, U.K.�. EGs
and BIPs were imaged under phase contrast and fluorescence
mode, respectively, using a 100� �NA 1.3� objective. Images
were recorded with a 12-bit charge coupled device �CCD�
camera �Hamamatsu IEEE 1394 C4742–95–12 ERG�. The
unit exposure time was set to 60 ms, and the spatial reso-
lution corresponding to the images was 0.13 �m per pixel.
Probe motion was studied in individual cells �both under
confluent and nonconfluent conditions� that contained a large
number of particles: typically 40 for BIPs and 80 for EGs. To
obtain enough observations for our statistical analysis, we
recorded in between 10 and 41 movies �of 2500 frames each�
per cell. Statistical analyses �of correlations and variances,
see Sec. III� were always performed on a single cell. The
time-dependent locations of the particles were obtained using
the available code �34�, originally based on the paper of
Crocker and Grier �35� and written and extended in interac-
tive data language �IDL�. The error in our measurement of
the particle displacements was 10 nm.

D. Computer simulations

Brownian dynamics simulations were performed to gen-
erate reference data for use in interpretation. The case of
uniformly sized particles in a Newtonian liquid was mim-
icked by spreading typically 200 particles over an XY area
and subsequently letting each particle make an individual
random two-dimensional �2D� step for each time unit, for a
total of 10 000 steps per particle. X and Y displacements per
particle and step were obtained by sampling from the Gauss-
ian distributions generated via the Box-Muller method as
available in the IDL library. Particle trajectories thus gener-
ated were transformed into iMSDs as explained in Sec. III.

III. PARTICLE TRACKING

A. Mean-squared displacement functions

To describe the dynamics of a single particle p, use can be
made of its �individual� mean-squared displacement function

�rp
2��� = �

t=1

Nt�p,��

��xp�t + �� − xp�t��2

+ �yp�t + �� − yp�t��2	/Nt�p,�� , �1�

with xp�t� and yp�t� representing the location of the particle at
time t and � as the lag time. Since the localizations are made
from video images, both t and � are expressed in units of the
exposure time per image: t1. Then the number of contribu-
tions Nt�p ,�� is given by Nt�p ,��= �Tp−�� / t1, with Tp as the
duration of the trajectory of particle p. Averaging the iMSD
over all particles then produces the total MSD,

�r2��� = �
p=1

Np

Nt�p,���rp
2���/�

p=1

Np

Nt�p,�� , �2�

with Np as the number of particles. This MSD is commonly
used in particle tracking studies. Inspired by the dynamic
behaviors displayed in some reference cases �diffusive mo-
tion in either �a� elastic or �b� viscous media or �c� ballistic
motion�, measured MSD functions are often fitted with a
power-law function

�r2��� 
 A� �

�ref
��

, �3�

with A as the amplitude at reference time �ref and � as the
power-law exponent �respectively, 0, 1, and 2 for the men-
tioned cases a, b, and c�. For particles embedded in linear
viscoelastic materials, fractional exponents can be found,
while also transitions in dynamic behavior can manifest
themselves at a certain lag time. To account for such cases,
use is made of local measures for A and �:

A = �r2��ref�, � = 
d ln��r2�
d ln �

�
�ref

. �4�

In principle, this description can also be applied to the indi-
vidual MSD functions. An illustration can be found in Fig. 1

FIG. 1. �Color online� Individual mean-squared displacement
functions obtained by simulation for a purely diffusive system. The
yellow central line indicates the total MSD obtained by averaging
over all particles. Inset: normalized distribution of the iMSD ampli-
tude as a function of the number of contributions to the average: 20
�red dashes�, 50 �blue dots�, and 200 �black solid line�.
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for a simulated set of particles in a Newtonian liquid: each of
the iMSDs has an amplitude and power-law exponent close
to that of the average. This demonstrates that even a single-
particle trajectory can already provide a �semi�quantitative
measure of the dynamics in the system. It is also seen that
the iMSDs display a larger “noise” in A and � at longer lag
times. This is a purely statistical effect, due to the random
nature of the individual displacements, combined with the
decreasing number of contributions Nt�p ,�� from which the
averages are calculated. Figure 1 thus shows both the utility
of the iMSD and the potential limitations on its use.

B. Segmentation

In the analysis of iMSD functions, the relation between
track length and noise level may need to be taken into ac-
count, especially when making statistical comparisons. One
approach is to consider only �fragments of� trajectories that
contain the same number of time steps. This number �N�
should be taken small enough to keep the fraction of lost
�i.e., too short� trajectories low and large enough to keep the
noise level acceptable. The iMSD of such a fragment is then
defined as

��rp
2�N��� = �

t=1

N−�/t1

��xp�t + �� − xp�t��2

+ �yp�t + �� − yp�t��2	/�N −
�

t1
� , �5�

which has N-1 contributions at �= t1, N-2 at �=2t1, etc. In
the remainder of this paper, our analysis will mainly be fo-
cused on the amplitude �Ap� of this iMSD for N=50 and
�= t1:

Ap � ��rp
2�50�t1� . �6�

C. Spatial and time dependences

The segmentation of trajectories into successive blocks of
duration 50�t1 also allows considering Ap as a function of
time:

Ap�t�� = �Ap�t1��,Ap�t2��,Ap�t3��, . . .	 , �7�

with

ti� = 50�i − 1
2�t1 + t0� �8�

as a new �coarse� time grid. Here t0� represents the real time
at which the trajectory of particle p started. By adding this
time, the Ap�t�� functions are again synchronized for the dif-
ferent particles so that all of them can be mapped onto a
unique real-time grid t� �from now on designated as t for
notational convenience�. In Fig. 2, an illustration is given of
how Ap�t� could look for two hypothetical particles �mim-
icked by computer simulation�. The lower black curve rep-
resents a Brownian particle dispersed in a homogeneous liq-
uid with constant viscosity; here the temporal variation in A
is purely due to statistical fluctuations. In contrast, the upper
red curve corresponds to a particle which transfers to an

environment with a higher viscosity. Now a decreasing trend
is superimposed onto the fluctuating signal.

Besides a real time, also a location can be assigned to
A, as evident from the fact that each particle p is localized
�as a function of time� by the tracking procedure. Consider-
ing all particles p present at the same time ti, the position
dependence of Ati

at that time is sampled at the locations
�xp ,yp�:

Ati
�r�� = �Ap1�xp1,yp1�,Ap2�xp2,yp2�, . . .	 . �9�

Following this approach, the collection of all particle trajec-
tories can be cast into a two dimensional matrix, of A values
as a function of particle index �columns� and real-time index
�rows�. Analysis within a row then allows to compare
A-values for the same particle at different times �notation:
Ap�t��, while analysis within a column allows to compare A
values for different particles observed at the same time
�notation: At�p��. This is also illustrated in Fig. 3.

FIG. 2. �Color online� Illustration of two exemplary behaviors
of the iMSD amplitude Ap of particle p as a function of real time.
Dotted lines show the average over the 100 observations. The inset
shows the corresponding histograms of Ap values.

t

p

)t(A 1p∆ )(g 1p τ
)t(A 2p∆ )(g 2p τ

)(g τ,)p(A 1t∆ )p(A 2t∆

,)d(f 1t )d(f 2t )d(f

FIG. 3. Schematic illustration of our analysis of iMSD ampli-
tudes. P labels individual particles �and their positions�, while t is
the index of a time segment in a chronological series. Filled circles
indicate for which matrix elements �p , t� a contribution to A exists.
Analysis of the rows allows studying fluctuations of A over time via
autocorrelation functions g��� or via variances. Analysis of the col-
umns allows quantifying spatial variations in A via cross correla-
tions f�d� or via variances.
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D. Time autocorrelation function

Temporal variations in the iMSD amplitude of a given
particle can occur if the particle is transferred into a me-
chanically different environment. One way to study such
changes in Ap over time is to calculate its time autocorrela-
tion function. Defining first the temporal fluctuation �Ap�t�
of an individual particle p as

�Ap�t� � Ap�t� − �Ap�t, �10�

with �Ap�t as the time average,

�Ap�t = �
t=1

Nt�p�

Ap�t�/Nt�p� , �11�

and Nt�p� as the number of contributions �i.e., the number of
elements in row p where A exists�; the autocorrelation func-
tion of Ap�t� is given by

gp��� =
1

Nt�p,�� �
t=1

Nt�p,��

�Ap�t��Ap�t + ��/
1

Nt�p� �
t=1

Nt�p�

��Ap�t��2,

�12�

with Nt�p ,��= �Tp−�� /�1, i.e., as before but now with � in
units of �1=50t1. Note that gp��� is normalized per particle.
Obtaining a time autocorrelation function with an acceptable
noise level requires a very large number of contributions. If
this criterion is not met for the individual functions gp���
then it may still be possible to obtain an autocorrelation
function with an acceptable signal-to-noise ratio �S /N� by
averaging over all particles:

g��� = �
p=1

Np

Nt�p,��gp���/�
p=1

Np

Nt�p,�� . �13�

This total autocorrelation function g��� will be analyzed in
Sec. IV.

E. Spatial cross correlation function

Spatial variations in A can be expected in materials where
the mechanical properties and/or driving forces depend on
location. Then having many probe particles spread out over
the material allows sampling of the spatial distribution of
these properties. To account for possible temporal variations
�i.e., A not only depending on location but also on time�,
spatial distributions of A will only be considered for particles
present at the same time. One way to analyze these is to
calculate a spatial correlation function. For this we first de-
fine the local deviation �At �associated with particle p� as

�At�p� = At�p� − �At�p, �14�

with �At�p as the ensemble average,

�At�p = �
p=1

Np�t�

At�p�/Np�t� , �15�

and Np�t� as the number of contributions �i.e., the number
of elements in column t where A exists�. Then using the
coupling between a particle’s index p and its position r�, the

distance dpq between the centers of two particles p and
q is calculated and subsequently binned onto an array di
= id1, with d1 as the chosen unit distance. Defining Ct,di
as the collection of all NCt,di

particle pairs �p ,q� for which

di	dpq�di+1 at time t, we then calculate the intermediate
function

Xt�di� = �
p,q�Ct,di

NCt,di

�At�p��At�q�/NCt,di
, �16�

which is then used to calculate the �normalized� spatial cor-
relation function at time t,

f t�di� = Xt�di�/Xt�di = 0� . �17�

Finally, averaging over all time segments t and generalizing
for all di then gives the total spatial �auto and cross� corre-
lation function

f�d� = �
t=1

T/�1

NCt,di
f t�d�/NCt,di

. �18�

This function is suited for revealing the presence or absence
of a spatial correlation length for A and will be analyzed in
Sec. IV.

F. Time variance

While correlation functions can provide detailed informa-
tion about characteristic time or length scales at which a
quantity �such as A� shows a change, they also require a huge
number of observations to achieve a good S /N ratio. In cases
where less data are available, one can still use �normalized�
variances to quantify heterogeneity in the distribution of A.
Using the definition Eq. �10�, the variance in Ap of a particle
p over time is given by

vartime�Ap� =
1

Nt�p� − 1 �
t=1

Nt�p�

��Ap�t��2 �19�

and transformed into a relative standard deviation with


rel
time�Ap� = �vartime�Ap�/�Ap�t. �20�

The average relative standard deviation corresponding to the
entire particle set �i.e., all rows in Fig. 3� can then be formu-
lated as


rel
time = �

p=1

Np

�Nt�p� − 1�
rel
time�Ap�/�

p=1

Np

�Nt�p� − 1� . �21�

It should be noted that the quantity expressed by Eq. �19�
�and hence also Eqs. �20� and �21�� may show an increase
with the amount of time over which A is observed: the longer
the time, the more opportunity is given to the particle to
explore all its accessible values of A. For example if the
analysis in Fig. 2 would have been restricted to 50 units
rather than 100, then the broadest histogram would have
been less broad. This aspect will be further considered in
Sec. IV.
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G. Spatial variance

The spatial variance of the amplitude can be calculated in
an analogous way as in Sec. III F but now by considering
columns instead of rows �Fig. 3�. Then the spatial variance
and relative standard deviation are defined for each column
�i.e., time t� as

varspatial�At� =
1

Np�t� − 1 �
p=1

Np�t�

��At�p��2 �22�

and


rel
spatial�At� = �varspatial�At�/�At�p. �23�

The total average over all times is then calculated as


rel
spatial = �

t=1

Nt

�Np�t� − 1�
rel
spatial�At�/�

t=1

Nt

�Np�t� − 1� . �24�

IV. RESULTS

Figure 4�a� shows a typical microscope image of a
Hmec-1 cell loaded with EGs. Tracking these particles over
50 steps of 60 ms, calculating the iMSDs, and representing
the amplitudes A hereof �cf. Eq. �6�� with a color scale, re-
sults in Fig. 4�b�. This map �the graphical equivalent of Eq.
�9�� is a representative for a set of 2000 of such images. It is
shown that the particles are more or less evenly distributed
over the accessible part of the cell interior �which excludes
the nucleus and the actin cortex�. Importantly, the amplitude
A varies appreciably between the particles, up to a factor
�16. This can also be seen from Fig. 4�c�, which shows
representative iMSD functions �cf. Eq. �1��. The significance
of this heterogeneity, compared to a Brownian particle sys-

tem �analyzed in the same way�, is apparent from the prob-
ability distributions in Fig. 4�d�.

Figure 4�b� does not show any obvious systematic trends:
neither particles close to each other nor particles close to the
nucleus seem to display clearly visible correlations. The lat-
ter is in contrast with earlier findings �9� for carboxylated
latex particles in Swiss 3T3 fibroblasts. For our EGs in qui-
escent Hmec-1 cells there is clearly strong dynamic hetero-
geneity, but it does not seem linked to any large scale orga-
nization within the cell.

Further �and more quantitative� analyses were performed
on the data sets underlying the amplitude maps. Here each
data set contained the real time index and for each particle its
�x ,y� location and its iMSD amplitude A. Although our mov-
ies were taken consecutively, time correlations were only
calculated within the same movie.

For our correlation analyses, we had to combine the data
from all 41 movies to obtain an acceptable accuracy. For the
spatial correlations, the number of particle pairs per image is

FIG. 4. �Color online� �a� Mi-
croscopy image of a Hmec-1 cell
containing endogenous granules,
visible as dark objects. �b� Recon-
struction of �a� in which each
particle has been assigned an
MSD amplitude, represented via a
color scale. �c� Individual and
whole cell MSDs as found in a
typical experiment. �d� Amplitude
histogram for EGs, averaged over
all experiments. For comparison,
also a histogram for Brownian
particles is included. Note the
amplitude normalization on the
abscissa.

FIG. 5. �Color online� Histogram of trajectory lengths obtained
from 41 movies of endogenous granules in a confluent Hmec-1 cell.
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important. On average there were 79 particles per image,
giving �3000 pairs. For the temporal correlations, both the
number of tracks and their duration are important. Figure 5
shows the histogram corresponding to the total data set �be-
fore segmentation�. Importantly, the number of trajectories
longer than 50 steps is high ��104� and a significant number
of very long trajectories is obtained.

The spatial correlation function for A �cf. Eq. �18�� is
shown in Fig. 6. The error bars display standard deviations
calculated from the spread between the f�d� functions calcu-
lated from the 41 individual movies. For comparison we also
included the result of the same analysis procedure but now
for carboxylated poly�styrene� �PS� latex particles in glycerol
�see inset�. Probably due to the larger number of particles per
image, the noise level is somewhat lower in the latter experi-
ment. The correspondence with the zero level is very good,
in line with expectations: for particles showing purely ran-
dom �i.e., Brownian� motion, correlations between the mo-
tion amplitudes of different particles should indeed be ab-
sent.

For EGs in Hmec-1 cells, the magnitude of the correlation
function lies mostly between 0 and 0.1. Considering that
the function is normalized to 1.0, this suggests that corre-
lations are either weak or absent. The slight upturn of the
curve for distances below 4 �m might however still be sig-
nificant. Making a more definitive statement would require
more particle pairs in close proximity. In our case inter-
particle separations of 1 �m were already relatively sparse
�2�104 contributions�, and achieving a sufficient number of
contributions at even smaller distances would require a pro-
hibitively large number of movies. Probably for the same
reason, Van Citters et al. �15� were not able to calculate a
reliable Drr for distances smaller than 2 �m. As a last re-
mark on this issue, we note that a fundamental lower limit on
the spatial resolution would ultimately be set by the fact that
the particles are mobile. In our case, the typical displacement
over 50 time steps of 60 ms amounted to �40 nm.

In summary, the results in Fig. 6 mainly confirm our ex-
pectation �based on inspection of many images such as those
in Fig. 4�b�� that clear spatial correlations in iMSD ampli-
tude are absent. This result corresponds well to the findings
for TC7 epithelial cells, where a similar conclusion was

drawn based on an analysis using two-point microrheology
�15�.

We now turn to time correlations. Figure 7 shows the
iMSD time autocorrelation function �diamonds� as calculated
from Eq. �13�, averaging over trajectories from all available
movies. For comparison, we also calculated the same func-
tion based on the same 41 movies but now with trajectories
segmented into blocks of 20 steps �squares�. For both these
calculations on EGs in Hmec-1 cells, we used only trajecto-
ries of 1000 or more unit time steps so that at least 20 �re-
spectively, 50� time points were available for calculating the
autocorrelation function. That this was an adequate criterion
to ensure significant results is illustrated by the correspon-
dence between the two curves.

Moreover we also applied this procedure to particle track-
ing experiments with latex particles in glycerol and to data
sets generated via the Brownian dynamics simulations. In the
latter two cases zero correlation is expected for all lag times
�except �=0� since in purely viscous systems the Langevin
equation does not contain any memory term that links the
current motion of a particle to its previous displacements.
The reference data in Fig. 7 confirm the immediate loss of
correlation, and the achievement of values very close to zero.
The small negative deviation from zero displayed by the
latex/glycerol data is attributed to the finite number of con-
tributions to the correlation function.

Returning to the case of EGs in Hmec-1 cells, it is first of
all clear that for times �10 s no correlations can be de-
tected. The upturn of the curves for correlation times shorter
than �10 s suggests that the iMSD amplitude of endog-
enous granules in Hmec-1 cells takes about 10 s to decorre-
late. Clearly this significant difference from the Brownian
reference case suggests the presence of some kind of intrac-
ellular reorganization at this time scale. Whether this would
be cytoskeleton remodeling, �un�binding to cytoskeletal ele-
ments, or simply cage rattling, this cannot be stated and re-
quires additional independent measurements.

We further note that while the plotted autocorrelation
function indicates the existence of a correlation time, it does
not reveal the magnitude of the changes in amplitude varia-
tion. To illustrate this multiplying the deviation �Ap�t� given

FIG. 6. �Color online� Spatial correlation function �cf. Eq. �18��
for the iMSD amplitude of EGs in Hmec-1 cells. Inset: reference
case of polystyrene latex particles in glycerol. Vertical bars indicate
standard deviations.

FIG. 7. �Color online� Time autocorrelation function �cf. Eq.
�13�� of the iMSD of EGs in Hmec-1 cells. Red diamonds and green
squares correspond to segmentation of trajectories into blocks of 50
and 20 units, respectively, of 60 ms. +: latex spheres in glycerol. �:
computer simulation for Brownian spheres.
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by Eq. �10� with an arbitrary constant will not change the
correlation function given by Eq. �12�. So while short-time
temporal correlations are present, their quantitative contribu-
tion to the MSD amplitude heterogeneity still has to be as-
sessed. Finally we remark that insufficient long trajectories
were available to obtain a reliable correlation function for
��25 s. However the fact that g��� already reaches near-
zero values at �=25 s implies that the time needed for a
change in average A comparable to the amplitude of the
short-time fluctuations �A is �25 s.

To assess the relative importance of spatial and temporal
variations in iMSD amplitude, we now turn to variance
analysis. Analyzing distributions for variance does not re-
quire the vast amount of data as needed for the correlation
functions since only one number has to be calculated �rather
than a binned distribution�. To illustrate the idea we again
consider Fig. 2, with the two hypothetical A�t� profiles. Both
profiles show fluctuations, but these are smaller than the dif-
ference between the average magnitudes of A. This is also
shown by the bar histograms shown in the inset. Besides the
average, also the variance is different for the two distribu-
tions. This is because upper profile not only fluctuates but
also gradually decreases over time.

The comparison in Fig. 2 stands model for an important
case: the difference in average iMSD between particles is
larger than the variations in iMSD shown by individual par-
ticles in the experimental time window �150 s�. If this dura-
tion were very long, then both particles might explore the
same set of accessible iMSD values �assuming the particles
remain indistinguishable by nature�, and the then resulting
amplitude histograms would coincide. However on short
time scales each particle explores only part of its “iMSD
configuration space.” Hence differences in the two variances,
�1� over particles �i.e., space� and �2� over time, can reveal
the presence of different microenvironments, as far as they
are significant over the �150 s� time scale of the experiment.

Let us now consider the iMSD amplitude variations for
EGs in Hmec-1 cells displayed in Fig. 8. Clearly, for each of
the 41 recorded movies, the temporal variations within the
trajectories are significantly smaller than the variations be-
tween particles. Moreover the relative standard deviation of

the temporal variations is only slightly larger than the ex-
pected value of 0.20 ��2 /N with N=50� for the Brownian
displacements. �For a Gaussian distribution P��x� with vari-
ance 
2, the expected variance of ��x�2 amounts to 2
4,
giving a relative standard deviation of �2
4 /
2. Then aver-
aging over N samples, this quantity reduces with a factor
1 /�N.� Importantly, this demonstrates that the different EGs
in Hmec-1 cells experience different microenvironments.

We also studied the relative standard deviation due to
temporal variations in the iMSD of the same particle in more
detail. If the relative standard deviation calculated from the
time dependence is due to more than stochastic fluctuations
alone, which is indeed suggested �0.26�0.20�, then a certain
time dependence does exist. In that case, the calculated 
rel
should increase with the duration of the trajectory �as ex-
plained in Sec. III F�. To examine this time dependence for
the EGs, we sorted all nonsegmented trajectories according
to their length l �see Fig. 5� and computed 
rel �l� by aver-
aging over all 41 movies. We found that 
rel �l� gradually
evolved from 0.20 at a track duration of 10 s to 0.26 for a
duration of 150 s. This indicates that at time scales up to 10
s the iMSD changes are rather small indeed and also the
increase in temporal heterogeneity over 150 s is still modest.
Apparently the time needed for important changes is indeed
�150 s, as was also suggested from the time autocorrelation
function.

V. DISCUSSION

A. Implications for particle tracking studies

A method for characterizing spatial and temporal hetero-
geneity in particle dynamics was applied to endogenous
granules in living Hmec-1 cells. We found appreciable local
variations in iMSD but no systematic dependence on intrac-
ellular location �Fig. 4�b��. An important implication hereof
is that the precise distribution of the probes inside the cyto-
plasm is not crucial for observing a dynamic behavior that is
representative for the whole cell. As long as the number of
probes is high enough to sample the distribution of microen-
vironments, the variations in MSD will be averaged out. This
means that it is justified to analyze the response of cells, e.g.,
to drug treatments via the standard �i.e., ensemble averaging�
particle tracking methods, even if the treated and untreated
cells �and hence also their intracellular particle distributions�
are different.

Also the absence of important transitions in the MSD of
single particles, at least for durations up to 150 s �Figs. 7 and
8�, has an important implication. It means that individual
dynamic behaviors observed in this time window can be con-
sidered without an obvious need for trajectory segmentation.
In other words, each particle will reflect an individual dy-
namics, which can be measured and analyzed directly from
its MSD-vs-lag time dependence, regardless of trajectory du-
ration. These considerations will be further used in Sec. V B,
in which we will analyze distributions of both the amplitude
A and the initial exponent � obtained from individual trajec-
tories.

B. Application of individual trajectory analysis

In this section we follow up on the finding that the het-
erogeneity in the iMSDs of our Hmec-1 cells is primarily

FIG. 8. �Color online� Relative standard deviations in the iMSD
amplitude of EGs in Hmec-1 cells, calculated in two different man-
ners. Spatial: cf. Eq. �24�. Temporal: cf. Eq. �21�. Dotted lines in-
dicate averages over the 41 movies. For Brownian particles in New-
tonian liquids, both averages coincide at 0.20.

DUITS et al. PHYSICAL REVIEW E 79, 051910 �2009�

051910-8



due to differences between �the local environments of� par-
ticles. In other words, both the intracellular location of the
particle and the integration time used for measuring the
iMSD are relatively unimportant. Hence it is sufficient to
consider lumped distributions of iMSDs. Besides EGs we
here also consider BIPs as described in Sec II B. For these
particles, less data could be obtained by particle tracking,
due to phototoxic effects of the laser illumination �showing
within minutes of exposure�. Yet, graphs similar to Figs. 4
and 8 suggested that also for these probes, the spatial hetero-
geneity was dominant.

In Fig. 9 we show typical sets of iMSDs �based on seg-
mented trajectories� of BIPs and EGs in �here nonconfluent�
Hmec-1 cells. Similar to Fig. 4, broad amplitude distribu-
tions are found, for the BIPs even more than for the EGs. It
is also apparent for both probe types that the �log-log� slopes
show variations from particle to particle. In addition, some
iMSDs appear noisy. This applies mostly to the BIPs for
which the particle displacements are sometimes rather small.

Fitting power laws to the first three points of the iMSD
functions, we obtained for each trajectory segment an ampli-
tude A and a power-law exponent �, which we then collected
into histograms. To compare histograms obtained for differ-
ent probe/matrix combinations, they have to be brought onto
a common �i.e., reduced� scale. For the dimensionless � this
was not needed. For the amplitude A this was achieved by
subtracting �ln�A�� from the distributed values of ln�A�. The
results shown in Fig. 10 are striking. First, the amplitude
histograms do not resemble a simple lognormal distribution
as found in �15,36–38�. This applies most strongly to BIPs,
for which it could already be seen from Fig. 9 that more than
one type of particle dynamics occurs. For EGs the correspon-
dence is better.

Also the power-law exponent � shows a remarkably
broad distribution. It is now apparent that while the ensemble
averaged MSDs for BIPs and EGs are close to simple behav-

iors �the average � being close to 0 and 1, respectively�, in
fact a significant variety in the dynamic behavior occurs for
both probes. This holds the most strongly for the EGs, where
it is suggested that besides diffusive, both subdiffusive and
superdiffusive behaviors occur. A biophysical interpretation
of the differences between EGs and BIPs will be given else-
where �39,40�.

We now consider some statistical aspects in the analysis
of histograms such as Figs. 10�a� and 10�b�. First of all we
remark that dividing trajectories into segments of standard
length is recommended when comparing such histograms.
One reason for this is that it standardizes the broadening that
takes place due to the finite trajectory lengths. This point is
most clearly illustrated by the distributions obtained from the
Brownian dynamics simulation. Here each particle had been
given the same diffusivity, implying that the expectation val-
ues for A and � were exactly the same. Yet distributions are
observed. For longer trajectory segments, these distributions
become sharper. For our EGs in Hmec-1 cells studied with
our camera, 50 steps per segment was an optimal choice.
Choosing N�50 would have meant exclusion of a substan-
tial fraction of the shortest trajectories from the analysis �see
Fig. 5�, possibly giving biased results, since in systems with
heterogeneous dynamics the “faster” particles generally have
shorter trajectories �41�. A second reason for segmentation
into standard blocks is that this can compensate for bias due
to the different frequencies at which “slow” and “fast” par-
ticles leave and re-enter the focal plane of the microscope
�and hence create “new” trajectories �34��.

We attribute the occurrence of negative values of � for
BIPs in Fig. 10�b� to the statistical broadening around an
average � that is close to 0. To corroborate this, we reana-
lyzed the BIPs trajectories after segmentation into blocks of
200 steps. As can be seen from Fig. 10�b�, the occurrence of
negative values has indeed become smaller. Following the
same logic, a similar question could be posed about the sig-

FIG. 9. �Color online� Representative set of
100 iMSD functions �based on trajectory seg-
ments cf. Eq. �5�� for BIPs �left� and EGs �right�
in Hmec-1 cells. Average MSDs �cf. Eq. �2�� are
shown in yellow. Solid magenta lines indicate a
power-law exponent of 1.

FIG. 10. �Color online� Probability distribu-
tions for the logarithm of amplitude �ln A� and
power-law exponent ��� measured at ��0.1 s
for two probe particles �EGs and BIPs� in indi-
vidual Hmec-1 cells. For comparison, also the
case of monodisperse particles in a Newtonian
liquid is included. Distributions for ln A have
been centered on zero. For BIPs the distribution
of � is also shown for segmentation into blocks
of 200 steps �dotted line�.
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nificance of the apparently superdiffusive behavior ���1�
displayed by a fraction of the EGs. However, in this case a
comparison can be made with the curve for the Brownian
system, for which the average � is approximately the same.
For the latter system, the chance of finding ��1.4 for an
iMSD based on 50 time steps is very small. Yet for EGs a
substantial fraction of trajectories with ��1.4 is still ob-
served. This indicates that for EGs there exist superdiffusive
behaviors, which are however hidden under an apparently
simple diffusive overall MSD. This finding is qualitatively in
line with the results of �13,42�.

C. Comparison with other particle tracking methods

The analysis method presented in this paper provides a
straightforward extension of 1PMR. As such it also shares
advantages and drawbacks of 1PMR. Depending on the se-
lected probes and the embedding material of interest, the
MSD function can reflect viscoelastic properties and/or
probe-matrix interactions. In “materials” such as living cells,
there may also be an additional contribution to the particle
dynamics by ATP-dependent driving forces. Consequently,
different �combinations of� properties can be studied with
1PMR. Knowledge of the chemistry between the probe and
the matrix and/or the ability to eliminate nonthermal driving
forces can then simplify interpretation. In this respect, living
cells provide the biggest opportunities and challenges. This
is however not limited to 1PMR. Also in 2PMR the particle
dynamics can no longer be related directly to the intracellular
rheology if nonthermal driving forces are acting.

What makes 2PMR unique is that it does not suffer from
a lack of knowledge on the probe-matrix interactions due to
the fundamentally different measurement principle. In 2PMR
one measures the correlated vectorial displacements of two
particles caused by the transmission of strain through the
effective medium in between. For interparticle distances
large compared to the typical size of a microenvironment,
these correlations become insensitive to the microenviron-
ments of the individual probes. Consequently, even in case of
local probe-matrix interactions �such as adhesion or repul-
sion, which can cause changes in the local microstructure�,
the measurement will reflect properties of the medium that
have been averaged over large length scales. While this as-
pect makes 2PMR more comparable to macroscopic rheol-
ogy, it also makes 2PMR less suited for studying spatial
heterogeneities. For example it may be found that Drr�r�
does not scale anymore as �1 /r, but then other methods will
be needed for further inspection of heterogeneities.

Our method is hence complementary to both 1PMR and
2PMR in their standard application, neither of which reveals
detailed information about spatial heterogeneity. Illustrations
of spatial heterogeneity, both quantitatively �i.e., iMSD am-
plitude� and qualitatively �i.e., both subdiffusivity and super-
diffusivity� were given in this paper. In principle this analysis

could also be taken further using a software to detect and
analyze subgroups of particles separately, based on their
iMSD. Such an approach was already successfully applied to
materials containing mechanically distinct �micro�phases
�24�.

A similar argument holds for temporal heterogeneity.
Standard applications of 1PMR and 2PMR are not suited for
detecting transitions from one dynamic behavior to the other
by the same particle. However with trajectory segmentation
as in Eq. �5� and variance analysis as in Eq. �21�, it should be
possible to detect for example the occurrence of intermittent
dynamics �19,43� even if this occurs for only a small fraction
of the particles.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we addressed spatiotemporal heterogeneity
in the dynamics of endogenous lipid granules in living
Hmec-1 cells. Careful analysis of large sets of individual
particle MSDs, considering distributions over time as well as
over particle populations, allowed us to conclude that at the
time scales pertinent to our experiments �150 s�, particles can
be distinguished according to their dynamic behavior. This
allowed straightforward interpretation of distributions for the
amplitude and power-law exponent. It thus became clear that
not only the motion amplitude but also the type of dynamics
showed considerable heterogeneity.

The implication hereof for obtaining a reliable ensemble
averaged MSD, is that many particles per cell and/or trajec-
tories consisting of many steps are needed. If �like in our
case� spatial correlations between the different particles are
absent, then the intracellular distribution of the particles will
not have to be taken into account. The important implication
of this outcome is that ensemble averaged MSDs measured
in cells of the same type but not the very same cell can still
be meaningfully compared. This opens up the road to diag-
nosing living cells �e.g., before and after pharmacological
interventions� via their MSD even if the treated and un-
treated cells are not the same.

Finally we conclude that the statistical tools that were
used to analyze spatiotemporal heterogeneity should be
equally applicable to a variety of other materials in which
such heterogeneities occur. Measurements of correlation dis-
tances and times will require very large data sets. But even if
these are not available, a straightforward analysis of relative
variances could already provide a quick “fingerprint” of het-
erogeneity.
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